Loading...

Blog de Gwestiel88

Anuncios



A tu mente subconsciente (el demiurgo) le da miedo despertar no quiere que despiertes porque si lo haces desaparecerá. 


Entonces le gusta que sigas admirando lo que hace, admirando sus creaciones, sus obras en tu vida y lo que hace por ti, «porque te ama» debido a ello te controla. 


Le gusta mantenerte encadenado a la materia para que le admires y no puedas retornar al origen de ti mismo, que es la negrura infinita de tu propio vacío para que TU SEAS UN SUPER HOMBRE UN DIOS DE TU PROPIA VIDA Y TU PROPIO MUNDO y él pierda su poder sobre ti.



Reflexiones personales. 














ANTIMATERIA

Acelerador de antiprotones del CERN
En química y física se conoce como antimateria a las agrupaciones organizadas de antipartículas, de forma análoga a como la materia es la agrupación de partículas.

Notación
En ciencia se usa una barra horizontal o macrón para diferenciar las partículas de las antipartículas: por ejemplo protón p y antiprotón p. Para los átomos de antimateria se emplea la misma notación: por ejemplo, si el hidrógeno se escribe H, el antihidrógeno será H.

También se utiliza la diferencia de carga eléctrica entre ambas partículas: por ejemplo electrón e− y positrón e+

Dónde está la antimateria
Las teorías científicas más aceptadas afirman que en el origen del universo existían materia y antimateria en iguales proporciones. Pero la materia y la antimateria se aniquilan mutuamente, dando como resultado energía pura, y sin embargo, el universo que observamos está compuesto únicamente por materia. Se desconocen los motivos por los que no se ha encontrado antimateria en el universo. En física, el proceso por el que la cantidad de materia superó a la de antimateria se denomina Bariogénesis, y baraja tres posibilidades:

Pequeño exceso de materia tras el Big Bang: Especula con que la materia que forma actualmente el universo podría ser el resultado de una ligera asimetría en las proporciones iniciales de ambas. Se ha calculado que la diferencia inicial entre materia y antimateria debió ser tan insignificante como de una partícula más de materia por cada diez mil millones de parejas partícula-antipartícula.

Asimetría CP: En 1967, Andréi Sájarov postuló por primera vez que las partículas y las antipartículas no tenían propiedades exactamente iguales o simétricas; una discusión denominada la Violación CP.Un reciente experimento en el acelerador KEK de Japón sugiere que esto quizás sea cierto, y que por tanto no es necesario un exceso de materia en el Big Bang: simplemente las leyes físicas que rigen el universo favorecen la supervivencia de la materia frente a la antimateria. En este mismo sentido, también se ha sugerido que quizás la materia oscura sea la causante de la bariogénesis al interactuar de distinta forma con la materia que con la antimateria.

Existencia de galaxias de antimateria ligada por antigravedad: Muy pocos científicos confían en esta posibilidad, pero todavía no ha podido ser completamente descartada. Esta tercera opción plantea la hipótesis de que pueda haber regiones del universo compuestas de antimateria. Hasta la fecha no existe forma de distinguir entre materia y antimateria a largas distancias, pues su comportamiento y propiedades son indistinguibles. Existen argumentos para creer que esta tercera opción es muy improbable: la antimateria en forma de antipartículas se crea constantemente en el universo en las colisiones de partículas de alta energía, como por ejemplo con los rayos cósmicos. Sin embargo, éstos son sucesos demasiado aislados como para que estas antipartículas puedan llegar a encontrarse y combinarse. La NASA ha enviado la sonda AMS (Alpha Magnetic Spectrometer) para buscar rastros de antimateria más compleja, que pudiesen indicar que todavía existe antimateria en el universo. Sin embargo los experimentos no han detectado nada hasta la fecha.

Historia
La ecuación de Dirac, formulada por Paul Dirac en 1928, predijo la existencia de antipartículas además de las partículas de materia ordinarias. Desde entonces, se han ido detectando experimentalmente muchas de dichas antipartículas: Carl D. Anderson, en el Caltech, descubrió el positrón en 1932. Veintitrés años después, en 1955, Emilio Segrè y Owen Chamberlain, en la universidad de Berkeley, el antiprotón y antineutrón.
Pero la primera vez que se pudo hablar propiamente de antimateria, es decir, de "materia" compuesta por antipartículas, fue en 1965, cuando dos equipos consiguieron crear un antideuterón, una antipartícula compuesta por un antiprotón y un antineutrón. La antipartícula fue lograda en el Acelerador Protón Sincrotón del CERN, a cargo de Antonino Zichichi, y paralelamente por Leon Lederman, en el acelerador AGS (Alternating Gradient Synchrotron) del Laboratonio Nacional de Brookhaven, en Nueva York.

En 1995, el CERN anunció la creación de nueve átomos de antihidrógeno en el experimento PS210, liderado por Walter Oelert y Mario Macri, y el Fermilab confirmó el hecho, anunciando poco después la creación a su vez de 100 átomos de antihidrógeno.

F. J Hartmann, de la Universidad Técnica de Munich, y un equipo de investigadores japoneses informaron de la creación de un átomo compuesto de materia y antimateria llamado helio antiprotónico . Este átomo constaba de dos protones, dos neutrones, un electrón y un antiprotón. El átomo sobrevivió 15 millonésimas de segundo

Producción y costo de la antimateria
La antimateria es la sustancia más cara del universo, con un coste estimado de 300.000 millones de USD el miligramo. La producción de antimateria, además de consumir enormes cantidades de energía, es muy poco eficiente, al igual que la capacidad de almacenamiento, que ronda sólo el 1% de las partículas creadas. Además, debido a que la antimateria se aniquila al contacto con la materia, las condiciones de almacenamiento —confinamiento mediante campos electromagnéticos—, tienen igualmente un coste elevado.

Otra estimación de su coste la dio el CERN, cuando dijo que había costado algunos cientos de millones de francos suizos la producción de una milmillonésima de gramo.
Debido a esto, algunos estudios de la NASA plantean recolectar mediante campos magnéticos la antimateria que se genera de forma natural en los Cinturones de Van Allen de la Tierra, o incluso en los cinturones de los grandes planetas gaseosos como
También se trabaja en mejorar la tecnología de almacenaje de antimateria. El Dr. Masaki Hori ha anunciado un método de confinamiento de antiprotones por radiofrecuencia, lo que según sus palabras podría reducir el contenedor al tamaño de una papelera.

En noviembre de 2008 la doctora Hui Chen del Lawrence Livermore National Laboratory de Estados Unidos anunció que ella y su equipo habrían creado positrones al hacer incidir un breve aunque intenso pulso láser a través de una lámina de oro blanco de pocos milímetros de espesor, esto habría ionizado al material y acelerado sus electrones. Los electrones acelerados emitieron cuantos de energía, que al decaer dieron lugar a partículas materiales, dando también como resultado positrones.

Usos de la antimateria
Si bien la antimateria está lejos de ser considerada una opción por su abrumador coste y las dificultades tecnológicas inherentes a su manipulación, las antipartículas sí están encontrando usos prácticos: la Tomografía por emisión de positrones es ya una realidad. También se investiga su uso en terapias contra el cáncer, ya que un estudio del CERN ha descubierto que los antiprotones son cuatro veces más efectivos que los protones en la destrucción de tejido canceroso, y se especula incluso con la idea de diseñar microscopios de antimateria, supuestamente más sensibles que los de materia ordinaria. Pero el mayor interés por la antimateria se centra en sus aplicaciones como combustible (o incluso para armamento), pues la aniquilación de una partícula con una antipartícula genera energía pura según la ecuación de Einstein E=mc² La energía generada por kilo (9×1016 J/kg), es unas diez mil millones de veces mayor que la generada por reacciones químicas, diez mil veces mayor que la energía nuclear, y unas cien veces mayor que la energía de fusión.

Por ejemplo, se estima que sólo serían necesarios 10 miligramos de antimateria para propulsar una nave a Marte.

No obstante, hay que indicar que estas cifras no tienen en cuenta que aproximadamente el 50% de la energía se disipa en forma de emisión de neutrinos, por lo que en la práctica habría que reducir las cifras a la mitad.
Antimateria en la ciencia ficción.

Como es lógico, la capacidad energética de la antimateria, unida a lo exótico de su concepto, la ha convertido en un referente en obras futuristas o de ciencia ficción, tanto en combustibles como armamentos. Recientemente además se ha especulado con el peligro de los aceleradores de partículas como método de generar antimateria, por su posible robo con fines terroristas en el libro Ángeles y demonios de Dan Brown. Aunque probablemente la nave más popular que utiliza antimateria como combustible sea la Enterprise de la saga Star Trek.

En el videojuego Halo: Combat Evolved, durante al ataque a la nave Pillar of Autumn, la IA de la nave informa de que uno de los grupos de abordaje había usado una carga de antimateria

Fuente: http://edisontarapues.blogspot.com.es/2009/06/antimateria.html
Enfriando antihidrogeno

Enfriando antihidrogeno


El manejo de la antimateria, tema exclusivo de la ciencia-ficción durante mucho tiempo, sigue progresando en capacidad de control. Aunque todavía falta mucho para que veamos motores de antimateria, cada vez se la puede fabricar, conservar y manipular con mayor destreza.


Ahora se ha diseñado un nuevo método para enfriar antihidrógeno después de haber sido atrapado y aislado. La técnica podría constituir un avance clave para controlar la antimateria, y permitir explorar un área de la física repleta de enigmas: la de las propiedades de la antimateria.


En el universo actual, la antimateria sólo existe de manera natural durante instantes fugaces, en el marco de fenómenos físicos de alta energía. Cuando materia y antimateria entran en contacto se aniquilan mutuamente, liberando una cantidad colosal de energía.


Cada partícula tiene una antipartícula. Por ejemplo, la antipartícula de un electrón es un positrón (o antielectrón) y la de un protón es un antiprotón. Una antipartícula es exactamente igual que su partícula correspondiente pero con la carga eléctrica opuesta. De igual modo, las antipartículas se pueden agrupar para formar un átomo de antihidrógeno, de antihelio, y así sucesivamente.
La combinación de un positrón y un antiprotón crea un átomo de antihidrógeno.
Diversas teorías sugieren que tras el Big Bang (el gran estallido con el que se cree que se creó el universo), deberían haberse formado cantidades iguales de materia y de antimateria. Como el universo actual está compuesto casi en su totalidad de materia, sigue siendo un gran misterio por qué no existe esta simetría.


El nuevo método para enfriar antihidrógeno, desarrollado por un grupo de investigadores de Estados Unidos y Canadá, podría enfriar átomos atrapados de antihidrógeno hasta temperaturas 25 veces más bajas que las logradas anteriormente, haciendo que éste sea mucho más estable y que sea mucho más fácil experimentar con él.


Enfriando antihidrogeno


En el método propuesto, se utiliza un láser que se dirige hacia átomos de antihidrógeno para "sacudirlos" de tal modo que pierdan energía y se enfríen. Las técnicas de enfriamiento por láser han sido decisivas en muchos experimentos importantes de la física de bajas temperaturas en años recientes.


Los átomos de antihidrógeno se forman en una trampa de vacío muy alto, inyectando antiprotones a un plasma de positrones. Un proceso atómico hace que el antiprotón capture un positrón, lo cual genera un átomo de antihidrógeno excitado electrónicamente.


Por regla general, los átomos de antihidrógeno tienen mucha más energía de lo que resultaría ideal para estudiarlos. Ese exceso de energía puede alterar las mediciones de sus propiedades. El método principal para reducir las altas energías de estos átomos es enfriarlos mediante láser hasta temperaturas muy bajas.


El método ideado por el equipo de Francis Robicheaux, de la Universidad de Auburn en Alabama, Estados Unidos, podría reducir la energía media del antihidrógeno atrapado lo suficiente como para hacer posible realizar mediciones más precisas de todos de sus parámetros.


El objetivo final de los experimentos con antihidrógeno es comparar sus propiedades con las del hidrógeno. Enfriar más el antihidrógeno será un paso importante para lograr esto.


A través de una serie de simulaciones por ordenador, el equipo de Robicheaux ha mostrado que los átomos de antihidrógeno podrían ser enfriados hasta cerca de 20 milésimas de 1 grado Kelvin. Hasta ahora, los átomos de antihidrógeno atrapados tienen energías de hasta 500 milésimas de 1 grado Kelvin.


La temperatura de cero grados Kelvin es el Cero Absoluto, o sea la temperatura más baja permitida por las leyes de la física tal como las entendemos, y equivale a 273,15 grados centígrados bajo cero, ó 459,67 grados Fahrenheit bajo cero.


Disponiendo de átomos de antihidrógeno más fríos de lo que ha sido posible hasta ahora, también se podría intentar medir en ellos la propiedad gravitatoria de la antimateria. En realidad, nadie ha visto a la antimateria ser atraída por un campo gravitacional, tal como acota Makoto Fujiwara, del equipo de investigación y miembro del TRIUMF, el Laboratorio Nacional canadiense de Física Nuclear y de Partículas. Por tanto, no se puede asegurar que la antimateria se comporte ante la gravedad del mismo modo en que lo hace la materia. Incluso existen hipótesis que asocian la antimateria con una hipotética antigravedad.


Referencia: IOP


Fuente: http://es.paperblog.com/enfriando-antihidrogeno-1730531/

Anuncios

Grupo en WhatsApp

Nuestro grupo de WhatsApp está disponible siempre.

Simplemente debes enviar un mensaje vía WhatsApp al número +34 655 153 439 pidiendo tu unión al grupo. No se admiten mensajes SMS ni llamadas. Por favor, revisa las normas de nuestro grupo haciendo clic aquí


Anuncios

Anuncios
'':
desvanecer
deslizar
Calificación: